"Applicazioni dell'imaging flow cytometry in ricerca biomedica e clinica"

Paola Lanuti Università "G. d'Annunzio", Chieti-Pescara

Vescicole Extracellulari (VE)

Morhayim J et al., Arch Biochem Biophys, 2014

Ruolo delle Vescicole Extracellulari

Shah R et al., The New England Journal of Medicine, 2018

Vescicole Extracellulari & Citometria a Flusso

Van der Pol E. et al., J. Thromb. Haemost., 2018

Liposomi Fluorescenti

10⁵ MV Gate

104

10-

0-

H-2 SS 10⁻³

10-

0-

Ó

Ó

H- 2SC-H

Analizzatore 1

10²

1 μm

Megamix-Plus SSC

400 nm

600 nm

Megamix-Plus FSC

Region H: optional gate for counting beads

Liposomi Fluorescenti

Analizzatore 2

Liposomi Fluorescenti

Cell Sorter

Procedure di arricchimento delle Vescicole Extracellulari

SHORT COMMUNICATION High-speed centrifugation induces aggregation of extracellular vesicles

Romain Linares¹, Sisareuth Tan¹, Céline Gounou¹, Nicolas Arraud¹ and Alain R. Brisson^{1,2*}

¹Molecular Imaging and NanoBioTechnology, University of Bordeaux, Pessac, France; ²Institut Universitaire de France, Paris, France

Fig. 3. Representative images of EVs from (a) PFP and (b, c) 100k-PFP sedimented onto electron microscopy grids after Anx5-gold labelling. (a) Isolated Anx5-positive EVs are observed, with no EV aggregates. (b) An EV aggregate, about 800 nm in overall size, is observed, together with isolated EVs (arrows). (c) High magnification view of the dashed box from b; the EV aggregate contains Anx5-positive and Anx5-negative EVs. Scale bars: 500 nm.

Vescicole Extracellulari & Sonde Fluorescenti

Liposomes

Metodo

- Sangue periferico
- Staining: 195 μl PBS 1X + Reagents* + 5 μl of Peripheral Blood (prelevati dal 2° tubo)
- Incubazione: RT, 45 minuti

2 Tubi (Sodio Citrato)

Frank A.W. et al., Circ. Res., 2017

*Reagenti:

- Lipophilic Cationic Dye
- Falloidina
- Mix di Anticorpi (CD45/CD31/CD41a)

Ottimizzare la <u>diluizione</u> del campione e il <u>flow rate</u> dello strumento!

Sangue Periferico

Dovizio M. et al., Mol. Pharm., 2013

10⁵

Sangue Periferico - FMO

1 % Triton X-100

Dimensione delle Vescicole Extracellulari

Vescicole Extracellulari & ImageStream

Haedland SE et al., Sci. Rep., 2014

Vescicole Extracellulari & ImageStream

Haedland SE et al., Sci. Rep., 2014

Vescicole Extracellulari in campioni eterogenei

		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
ymphocytes	198	0		0			0.
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
	628	1	0.00	•			
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
ve platelets (white t derived EV)	318	•		•			*
t delived Ev)		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
	948	Ó		•		*	_,
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
	658						
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
ved EVs	356						•
•		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
	672		A CONTRACTOR	•			
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
J	5727						
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
	5714	0	0			-	-0-
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
C telet derived EV)	5201	0	8			-	
		BF1	AV FITC	CD31 PE	CD42a AF647	Scatter	3 Color Composite
egates	118	2		•			—> *

CD31 positive lymphocytes

CD31/CD42a positive platelets (white arrow → platelet derived EV)

Platelet-derived EVs

RBC

 $\frac{\text{RBC}}{\text{(white arrow} \rightarrow \text{platelet derived EV)}}$

EV Aggregates

Erdbrügger U et al., Cytometry A, 2014

Vescicole Extracellulari & ImageStream

001	040 048				
	042 048			~ 0	,1 µm
				0,1 -	• 0,5 µm
	040 DB			~ 0	,5 µm
		% of MV < 0.16 μm	% of MV 0.16-0.5 μm	% of MV > 0.5 μm	
	Sample 1	50	40	10	
:	Sample 2	60	30	10	
	Sample 3	59,2	26,8	12	

Ingrandimento 60 X \rightarrow dimensione pixel = 0.3 μ m²

Vescicole Extracellulari & ImageStream

- Laser \rightarrow Potenza massima;
- Ingrandimento \rightarrow 60 X;
- Fluorocromi brillanti.

Lannigan J et al., Methods, 2017

Table 1. Comparison of MP detection between ISX and FCM FortessaTM and FCM FACSCaliburTM (number of MPs per μ I) at high (maximal laser power) and low (same laser power as FACSCaliburTM) laser powers

	FCM CALIBUR	FCM FORTESSA		IS	ISX	
	LOW	LOW	HIGH	LOW	HIGH	
TYPE OF MP/ μ l	LASERA	LASER	LASER	LASER	LASER	
-						
Total MP	290	197	227	2035	4954	
AV pos Mps	140	135	129	1523	4549	
AV neg Mps	148	66	98	510	401	
AV+CD41+	114	91	92	1633	4238	
AV+CD45+	0	0	0	0	0	

Absolute Numbers AV+ and AV- MPs

Erdbrügger U et al., Cytometry A, 2014

Vescicole extracellulari nel sangue periferico

MVs/μl 5000 4000 3000 2000 1000 0 *PLT.M^{NUN} *CON^{5/WI} *CON^{5/WI}

Proteomics of MVs from peripheral blood of healthy donors

Liquor versus Lacrime

Proteomica delle Vescicole separate da Luquor

Proteomica delle Vescicole separate da Luquor

Saliva & Urine

Saliva

Urine

Funzionalità e ImageStream

Internalization_C_E4_Ch02

Population	Count	%Gated
CSFE+ & Singlets & Focus	242	100
Int & CSFE+ & Singlets & Focus	109	45
No int & CSFE+ & Singlets & Focus	117	48.3

Funzionalità e ImageStream

Spot Count_Peak(M03, Channel 3, Bri

Population	Count	%Gated
Singlets & Best Focus	1423	100
R1 & Singlets & Best Focus	1141	80.2
R2 & Singlets & Best Focus	188	13.2

A rich source of yeast extracellular vesicles

Take home Messages

- Lo studio delle vescicole extracellulari mediante *Imaging Flow Cytometry* consente di risolvere l'annoso problema legato alla necessità di misurarne le **dimensioni**;
- La possibilità di analizzare l'internalizzazione delle vescicole nelle cellule target apre prospettive interessanti nello studio della **funzionalità** delle vescicole extracellulari;
- L'impiego dell' *Imaging Flow Cytometry* nell ricerca biomedica e clinica rappresenta un **valore aggiunto**.

Prof. Sebastiano Miscia Prof. Marco Marchisio Dott.ssa Laura Pierdomenico Dott.ssa Giuseppina Bologna Dott.ssa Eva Ercolino Dott. Pasquale Simeone Dott. Domenico Bosco

Prof. Piero Del Boccio Dott.ssa Daminana Pieragostino Dott.ssa Ilaria Cicalini Prof.ssa Antonella Fontana Dott.ssa Romina Zappacosta

Dott.ssa Rossella Grande Dott. Christian Celia

Dott. Edwin van der Pol

Swarm Effect!

Journal of Thrombosis and Haemostasis, 10: 919-930

DOI: 10.1111/j.1538-7836.2012.04683.x

IN FOCUS

Single vs. swarm detection of microparticles and exosomes by flow cytometry

E. VAN DER POL, * † M. J. C. VAN GEMERT, † A. STURK, * R. NIEUWLAND* and T. G. VAN LEEUWEN†‡ *Laboratory of Experimental Clinical Chemistry and †Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam; and ‡Biomedical Photonic Imaging, University of Twente, Enschede, the Netherlands

Optimization of sample dilution and flow rate!

Whole peripheral blood versus PFP

Frank A.W. et al., Circ. Res., 2017

MV contaminants (Peripheral Blood)

RBC Ghosts

Apolipoproteins

MV contaminants (CSF)

1X10⁶ MVs ↓ More than100 CLEANED PROTEINS

🙄 BD

kinson and Company.

Microglial and Neuronal MVs from different biofluids

Cellular component classification

Biological pathways classification

